In performing the experiment, the Caltech group was able to get around the Heisenberg Uncertainty Principle, the main barrier for teleportation of objects larger than a photon. This principle states that you cannot simultaneously know the location and the speed of a particle. But if you can't know the position of a particle, then how can you teleport it? In order to teleport a photon without violating the Heisenberg Principle, the Caltech physicists used a phenomenon known as entanglement. In entanglement, at least three photons are needed to achieve quantum teleportation:
- Photon A: The photon to be teleported
- Photon B: The transporting photon
- Photon C: The photon that is entangled with photon B
In other words, when Captain Kirk beams down to an alien planet, an analysis of his atomic structure is passed through the transporter room to his desired location, where a replica of Kirk is created and the original is destroyed.
In 2002, researchers at the Australian National University successfully teleported a laser beam.
The most recent successful teleportation experiment took place on October 4, 2006 at the Niels Bohr Institute in Copenhagen, Denmark. Dr. Eugene Polzik and his team teleported information stored in a laser beam into a cloud of atoms. According to Polzik, "It is one step further because for the first time it involves teleportation between light and matter, two different objects. One is the carrier of information and the other one is the storage medium" [CBC]. The information was teleported about 1.6 feet (half a meter).
Quantum teleportation holds promise for quantum computing. These experiments are important in developing networks that can distribute quantum information. Professor Samuel Braunstein, of the University of Wales, Bangor, called such a network a "quantum Internet." This technology may be used one day to build a quantum computer that has data transmission rates many times faster than today's most powerful computers.
No comments:
Post a Comment