There are a number of theories available for predicting the stresses under which a material element will deform plastically. Each theory is based on a different hypothesis about material behaviour, but in this work we shall only consider two common models and apply them to the plane stress process described by Equations ε1; ε2 = βε1; ε3 = −(1 + β)ε1. Over the years, many researchers have conducted experiments to determine how materials yield. While no single theory agrees exactly with experiment, for isotropic materials either of the models presented here are sufficiently accurate for approximate models.
With hindsight, common yielding theories can be anticipated from knowledge of the nature of plastic deformations in metals. These materials are polycrystalline and plastic flow occurs by slip on crystal lattice planes when the shear stress reaches a critical level. To a first approximation, this slip which is associated with dislocations in the lattice is insensitive to the normal stress on the slip planes. It may be anticipated then that yielding will be associated with the shear stresses on the element and is not likely to be influenced by the average stress or pressure. It is appropriate to define these terms more precisely.
No comments:
Post a Comment